Short peptide based self-assembled nanostructures: implications in drug delivery and tissue engineering
Abstract
Self-assembly of biomolecules facilitates the creation of a diverse range of hierarchical nanostructures from a wide range of polymeric and non-polymeric materials. Peptides and specifically short peptides are very attractive in this respect due to their unmatched biocompatibility, ease of synthesis, functionability as well as tunable bioactivity along with the availability of rich chemistry for fine-tuning the structure and function of peptides according to environmental conditions. Self-assembled peptide based nanostructures such as tubes, filaments, fibrils, hydrogels, vesicles, and monolayers have been studied by many research groups and found application as three-dimensional cell growing scaffolds, dental implants, neural tissue engineering scaffolds and as carriers for drugs, proteins and genes, and nucleotides. Nanostructures are also being developed from designed or modified amino acids to have enhanced cellular as well as in vivo stability. These modified nanostructures showed enhanced drug delivery properties both under in vivo and in vitro conditions.