Issue 2, 2014

An ultrafast surface-bound photo-active molecular motor

Abstract

We report the synthesis and surface attachment of an ultrafast light-driven rotary molecular motor. Transient absorption spectroscopy revealed that the half-life of the rate determining thermal step of the rotary cycle in solution is 38 ± 1 ns, the shortest yet observed, making this the fastest molecular motor reported. Incorporation of acetylene legs into the structure allowed the motors to be grafted to azide-modified quartz and silicon substrates using the “click” 1,3-dipolar cycloaddition reaction.

Graphical abstract: An ultrafast surface-bound photo-active molecular motor

Supplementary files

Article information

Article type
Paper
Submitted
02 Jul 2013
Accepted
11 Sep 2013
First published
04 Oct 2013

Photochem. Photobiol. Sci., 2014,13, 241-246

An ultrafast surface-bound photo-active molecular motor

J. Vachon, G. T. Carroll, M. M. Pollard, E. M. Mes, A. M. Brouwer and B. L. Feringa, Photochem. Photobiol. Sci., 2014, 13, 241 DOI: 10.1039/C3PP50208B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements