Issue 23, 2014

Synthesis and assembly of nanomaterials under magnetic fields

Abstract

Traditionally, magnetic field has long been regarded as an important means for studying the magnetic properties of materials. With the development of synthesis and assembly methods, magnetic field, similar to conventional reaction conditions such as temperature, pressure, and surfactant, has been developed as a new parameter for synthesizing and assembling special structures. To date, magnetic fields have been widely employed for materials synthesis and assembly of one-dimensional (1D), two-dimensional (2D) or three-dimensional (3D) aggregates. In this review, we aim to provide a summary on the applications of magnetic fields in this area. Overall, the objectives of this review are: (1) to theoretically discuss several factors that refer to magnetic field effects (MFEs); (2) to review the magnetic-field-induced synthesis of nanomaterials; the 1D structure of various nanomaterials, such as metal oxides/sulfide, metals, alloys, and carbon, will be described in detail. Moreover, the MFEs on spin states of ions, magnetic domain and product phase distribution will be also involved; (3) to review the alignment of carbon nanotubes, assembly of magnetic nanomaterials and photonic crystals with the help of magnetic fields; and (4) to sketch the future opportunities that magnetic fields can face in the area of materials synthesis and assembly.

Graphical abstract: Synthesis and assembly of nanomaterials under magnetic fields

Article information

Article type
Review Article
Submitted
03 Sep 2014
Accepted
30 Sep 2014
First published
02 Oct 2014

Nanoscale, 2014,6, 14064-14105

Synthesis and assembly of nanomaterials under magnetic fields

L. Hu, R. Zhang and Q. Chen, Nanoscale, 2014, 6, 14064 DOI: 10.1039/C4NR05108D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements