Issue 22, 2014

Real-time imaging and elemental mapping of AgAu nanoparticle transformations

Abstract

We report the controlled alloying, oxidation, and subsequent reduction of individual AgAu nanoparticles in the scanning transmission electron microscope (STEM). Through sequential application of electron beam induced oxidation and in situ heating and quenching, we demonstrate the transformation of Ag–Au core–shell nanoparticles into: AgAu alloyed, Au–Ag core–shell, hollow Au–Ag2O core–shell, and Au–Ag2O yolk-shell nanoparticles. We are able to directly image these morphological transformations in real-time at atomic resolution and perform energy dispersive X-ray (EDX) spectrum imaging to map changing elemental distributions with sub-nanometre resolution. By combining aberration corrected STEM imaging and high efficiency EDX spectroscopy we are able to quantify not only the growth and coalescence of Kirkendall voids during oxidation but also the compositional changes occurring during this reaction. This is the first time that it has been possible to track the changing distribution of elements in an individual nanoparticle undergoing oxidation driven shell growth and hollowing.

Graphical abstract: Real-time imaging and elemental mapping of AgAu nanoparticle transformations

Supplementary files

Article information

Article type
Paper
Submitted
21 Aug 2014
Accepted
11 Sep 2014
First published
19 Sep 2014
This article is Open Access
Creative Commons BY license

Nanoscale, 2014,6, 13598-13605

Author version available

Real-time imaging and elemental mapping of AgAu nanoparticle transformations

E. A. Lewis, T. J. A. Slater, E. Prestat, A. Macedo, P. O'Brien, P. H. C. Camargo and S. J. Haigh, Nanoscale, 2014, 6, 13598 DOI: 10.1039/C4NR04837G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements