Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The nucleation of SrTiO3 three-dimensional (3D) islands and nanorings on Si substrates via a novel metalorganic decomposition (MOD) process has been investigated as a function of temperature and solution concentration of the SrTi(OC3H7)6 precursor. Quantitative analysis of island density and size distribution by atomic force microscopy (AFM) has revealed the existence of a nucleation regime at solution concentrations below 5 × 10−3 M, in which the critical nucleus is a trimer and a coalescence regime at higher concentrations, dominated by growth of immobile clusters. Nanorings form preferentially under high supersaturation conditions and their size distribution is consistent with a dynamic coalescence. On the basis of recent theoretical models (Gill, 2012), we have proposed that the island-to-nanoring transition in the SrTiO3/Si system occurs above a critical size as a result of a competition between energetic and kinetic factors. The combination of high-resolution transmission electron microscopy (HRTEM) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) has shown that the monocrystalline SrTiO3 nanoclusters grow pseudomorphically on the Si substrate and exhibit a strain-induced tetragonal lattice distortion.

Graphical abstract: Nucleation kinetics of SrTiO3 3D islands and nanorings on Si substrates

Page: ^ Top