Issue 21, 2014

Torsion sensors of high sensitivity and wide dynamic range based on a graphene woven structure

Abstract

Due to its unique electromechanical properties, nanomaterial has become a promising material for use in the sensing elements of strain sensors. Tensile strain is the type of deformation most intensively studied. Torsion is another deformation occurring in everyday life, but is less well understood. In the present study a torsion sensor was prepared by wrapping woven graphene fabrics (GWFs) around a polymer rod at a specific winding angle. The GWF sensor showed an ultra-high sensitivity with a detection limit as low as 0.3 rad m−1, indicating its potential application in the precise measurement of low torsions. The GWFs were pre-strained before wrapping on polydimethylsiloxane (PDMS) to improve the tolerance of the sensor to high torsion. The microstructure of the GWFs at different torsion levels was monitored using an optical microscope. The results demonstrated the formation of GWF waves and cracks under high torsion, a critical factor in determining the electromechanical properties of a GWF sensor.

Graphical abstract: Torsion sensors of high sensitivity and wide dynamic range based on a graphene woven structure

Supplementary files

Article information

Article type
Paper
Submitted
13 Jun 2014
Accepted
07 Sep 2014
First published
10 Sep 2014

Nanoscale, 2014,6, 13053-13059

Author version available

Torsion sensors of high sensitivity and wide dynamic range based on a graphene woven structure

T. Yang, Y. Wang, X. Li, Y. Zhang, X. Li, K. Wang, D. Wu, H. Jin, Z. Li and H. Zhu, Nanoscale, 2014, 6, 13053 DOI: 10.1039/C4NR03252G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements