Issue 15, 2014

Length scale of Leidenfrost ratchet switches droplet directionality

Abstract

Arrays of tilted pillars with characteristic heights spanning from hundreds of nanometers to tens of micrometers were created using wafer level processing and used as Leidenfrost ratchets to control droplet directionality. Dynamic Leidenfrost droplets on the ratchets with nanoscale features were found to move in the direction of the pillar tilt while the opposite directionality was observed on the microscale ratchets. This remarkable switch in the droplet directionality can be explained by varying contributions from the two distinct mechanisms controlling droplet motion on Leidenfrost ratchets with nanoscale and microscale features. In particular, asymmetric wettability of dynamic Leidenfrost droplets upon initial impact appears to be the dominant mechanism determining their directionality on tilted nanoscale pillar arrays. By contrast, asymmetric wetting does not provide a strong enough driving force compared to the forces induced by asymmetric vapour flow on arrays of much taller tilted microscale pillars. Furthermore, asymmetric wetting plays a role only in the dynamic Leidenfrost regime, for instance when droplets repeatedly jump after their initial impact. The point of crossover between the two mechanisms coincides with the pillar heights comparable to the values of the thinnest vapor layers still capable of cushioning Leidenfrost droplets upon their initial impact. The proposed model of the length scale dependent interplay between the two mechanisms points to the previously unexplored ability to bias movement of dynamic Leidenfrost droplets and even switch their directionality.

Graphical abstract: Length scale of Leidenfrost ratchet switches droplet directionality

Supplementary files

Article information

Article type
Paper
Submitted
01 May 2014
Accepted
13 Jun 2014
First published
19 Jun 2014

Nanoscale, 2014,6, 9293-9299

Author version available

Length scale of Leidenfrost ratchet switches droplet directionality

R. L. Agapov, J. B. Boreyko, D. P. Briggs, B. R. Srijanto, S. T. Retterer, C. P. Collier and N. V. Lavrik, Nanoscale, 2014, 6, 9293 DOI: 10.1039/C4NR02362E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements