Facile and cost effective synthesis of mesoporous spinel NiCo2O4 as an anode for high lithium storage capacity†
Abstract
To fulfill the high power and high energy density demands for Li-ion batteries (LIBs) new anode materials need to be explored to replace conventional graphite. Herein, we report the urea assisted facile co-precipitation synthesis of spinel NiCo2O4 and its application as an anode material for LIBs. The synthesized NiCo2O4 exhibited an urchin-like microstructure and polycrystalline and mesoporous nature. In addition, the mesoporous NiCo2O4 electrode exhibited an initial discharge capacity of 1095 mA h g−1 and maintained a reversible capacity of 1000 mA h g−1 for 400 cycles at 0.5 C-rate. The reversible capacity of NiCo2O4 could still be maintained at 718 mA h g−1, even at 10 C. The mesoporous NiCo2O4 exhibits great potential as an anode material for LIBs with the advantages of unique performance and facile preparation.