Tensile strain induced switching of magnetic states in NbSe2 and NbS2 single layers†
Abstract
Two dimensional crystals, befitting nanoscale electronics and spintronics, can benefit strain-tunable applications due to their ultrathin and flexible nature. We show by first-principles calculations that tensile strain can enhance the exchange splitting of spins in NbSe2 and NbS2 single layers. Particularly, a switch from antiferro- to ferro-magnetism is realized by strain engineering. Under strains lower than 4%, an antiferromagnetic state with opposite spins aligned on the next-nearest-neighbor rows of Nb atoms is favored in energy due to a superexchange interaction; with higher strains the ground state turns to be ferromagnetic with a double exchange origin. In contrast, the VSe2 and VS2 single layers, though with the same trigonal prismatic coordination, remain ferromagnetic even under compressive strains.
Please wait while we load your content...