Issue 17, 2014

Long-range chemical orders in Au–Pd nanoparticles revealed by aberration-corrected electron microscopy

Abstract

Despite the importance of gold–palladium nanoalloys in heterogeneous catalysis, the phase stability of Au–Pd alloys still remains unclear. We report here on the alloying and chemical ordering in epitaxially-grown and post-annealed gold–palladium nanoparticles (NPs) using aberration-corrected transmission electron microscopy. Au–Pd NPs with a controlled size, composition and structure were grown by pulsed laser deposition on freshly-cleaved NaCl(001) single crystals heated at 300 °C. After transfer to an amorphous carbon support, the NPs were annealed in vacuum at elevated temperatures above 400 °C for a few hours (6–10 hours) to promote chemical ordering. The as-grown NPs were mostly monocrystalline with a chemically-disordered face-centered cubic structure. Upon high-temperature annealing, a high degree of chemical ordering was observed in nanometer-sized NPs. Electron microscopy measurements showed that both L10 and L12 orders are stabilized in the Au-rich region of the Au–Pd phase diagram. These ordered phases exist at temperatures as high as 600 °C. Moreover, compositional analysis of single annealed particles revealed that the observed chemical ordering occurs in parallel to a two-tiered Ostwald ripening process. Due to this ripening process, a clear dependence between chemical composition and particle size is established during annealing with an enrichment in Pd as the NPs grow in size. Our results, besides clarifying some controversial aspects about long-range order in Au–Pd alloys, shed light on the structural stability of Au–Pd nanoalloys at elevated temperatures.

Graphical abstract: Long-range chemical orders in Au–Pd nanoparticles revealed by aberration-corrected electron microscopy

Supplementary files

Article information

Article type
Paper
Submitted
14 Mar 2014
Accepted
27 Jun 2014
First published
03 Jul 2014

Nanoscale, 2014,6, 10423-10430

Long-range chemical orders in Au–Pd nanoparticles revealed by aberration-corrected electron microscopy

J. Nelayah, N. T. Nguyen, D. Alloyeau, G. Y. Wang and C. Ricolleau, Nanoscale, 2014, 6, 10423 DOI: 10.1039/C4NR01427H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements