Jump to main content
Jump to site search

Issue 11, 2014
Previous Article Next Article

Reducing ZnO nanoparticle cytotoxicity by surface modification

Author affiliations

Abstract

Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than altering either intracellular or extracellular Zn dissolution.

Graphical abstract: Reducing ZnO nanoparticle cytotoxicity by surface modification

Back to tab navigation

Supplementary files

Article information


Submitted
23 Jan 2014
Accepted
25 Mar 2014
First published
01 Apr 2014

Nanoscale, 2014,6, 5791-5798
Article type
Paper
Author version available

Reducing ZnO nanoparticle cytotoxicity by surface modification

M. Luo, C. Shen, B. N. Feltis, L. L. Martin, A. E. Hughes, P. F. A. Wright and T. W. Turney, Nanoscale, 2014, 6, 5791
DOI: 10.1039/C4NR00458B

Social activity

Search articles by author

Spotlight

Advertisements