Issue 10, 2014

Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors

Abstract

Ultrathin metal nanowires are ultimately analytical tools that can be used to survey the interfacial properties of the functional groups of organic molecules immobilized on nanoelectrodes. The high ratio of surface to bulk atoms makes such ultrathin nanowires extremely electrically sensitive to adsorbates and their charge and/or polarity, although little is known about the nature of surface chemistry interactions on metallic ultrathin nanowires. Here we report the first studies about the effect of functional groups of short-chain alkanethiol molecules on the electrical resistance of ultrathin gold nanowires. We fabricated ultrathin nanowire electrical sensors based on chemiresistors using conventional microfabrication techniques, so that the contact areas were passivated to leave only the surface of the nanowires exposed to the environment. By immobilizing alkanethiol molecules with head groups such as –CH3, –NH2 and –COOH on gold nanowires, we examined how the charge proximity due to protonation/deprotonation of the functional groups affects the resistance of the sensors. Electrical measurements in air and in water only indicate that beyond the gold–sulfur moiety interactions, the interfacial charge due to the acid–base chemistry of the functional groups of the molecules has a significant impact on the electrical resistance of the wires. Our data demonstrate that the degree of dissociation of the corresponding functional groups plays a major role in enhancing the surface-sensitive resistivity of the nanowires. These results stress the importance of recognizing the effect of protonation/deprotonation of the surface chemistry on the resulting electrical sensitivity of ultrathin metal nanowires and the applicability of such sensors for studying interfacial properties using electrodes of comparable size to the electrochemical double layer.

Graphical abstract: Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors

Supplementary files

Article information

Article type
Paper
Submitted
07 Nov 2013
Accepted
07 Feb 2014
First published
04 Mar 2014

Nanoscale, 2014,6, 5146-5155

Author version available

Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors

A. Kisner, M. Heggen, D. Mayer, U. Simon, A. Offenhäusser and Y. Mourzina, Nanoscale, 2014, 6, 5146 DOI: 10.1039/C3NR05927H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements