Issue 4, 2014

8-Hydroxylquinoline-conjugated porphyrins as broadband light absorbers for dye-sensitized solar cells

Abstract

Three porphyrin dyes, DPZn-HOQ, PZn-HOQ and DPZn-COOH, were synthesized and characterized for dye-sensitized solar cells. Both DPZn-HOQ and DPZn-COOH exhibited a donor–π–acceptor configuration with N,N-dimethylaniline as a donor and 8-hydroxylquinoline (HOQ) and para-benzoic acid (BZA) as acceptors, respectively. PZn-HOQ is an analogue of DPZn-HOQ without a donor. It was found that DPZn-HOQ exhibited broader and stronger light absorption capability in the red region than DPZn-COOH. Theoretical calculations showed that the electrons were delocalized to the 8-hydroxylquinoline ring in DPZN-HOQ. The DPZn-HOQ-sensitized solar cells exhibited higher energy conversion efficiency (3.09%) than DPZn-COOH-sensitized solar cells (1.76%) under the same conditions. The results were consistent with the incident photon to current conversion efficiency (IPCE) spectra. The electrochemical impedance spectroscopy studies revealed that HOQ-conjugated porphyrin exhibited high electron recombination resistance and a long electron lifetime, which was attributed to the effective shielding of DPZn-HOQ from the electrolyte due to its tilted orientation on the surface of TiO2 nanoparticles. The efficiency of DPZn-HOQ-sensitized solar cells was further increased to 3.41% when a complementary dye BET was used.

Graphical abstract: 8-Hydroxylquinoline-conjugated porphyrins as broadband light absorbers for dye-sensitized solar cells

Article information

Article type
Paper
Submitted
26 Dec 2013
Accepted
28 Jan 2014
First published
28 Jan 2014

New J. Chem., 2014,38, 1565-1572

8-Hydroxylquinoline-conjugated porphyrins as broadband light absorbers for dye-sensitized solar cells

L. Si, H. He and K. Zhu, New J. Chem., 2014, 38, 1565 DOI: 10.1039/C3NJ01643A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements