Issue 3, 2014

A dual-targeting, p53-independent, apoptosis-inducing platinum(ii) anticancer complex, [Pt(BDIQQ)]Cl


The therapeutic index and cellular mechanism of action of [Pt(BDIQQ)]Cl, a monocationic, square-planar platinum(II) complex, are reported. [Pt(BDIQQ)]Cl was used to treat several cell lines, including wild type and cisplatin-resistant ovarian carcinoma cells (A2780 and A2780CP70) and non-proliferating lung carcinoma cells (A549). [Pt(BDIQQ)]Cl selectively kills cancer cells over healthy cells and exhibits no cross-resistance with cisplatin. The mechanism of cell killing was established through detailed cell-based assays. [Pt(BDIQQ)]Cl exhibits dual-threat capabilities, targeting nuclear DNA and mitochondria simultaneously. [Pt(BDIQQ)]Cl induces DNA damage, leading to p53 enrichment, mitochondrial membrane potential depolarisation, and caspase-mediated apoptosis. [Pt(BDIQQ)]Cl also accumulates in the mitochondria, resulting in direct mitochondrial damage. Flow cytometric studies demonstrated that [Pt(BDIQQ)]Cl has no significant effect on cell cycle progression. Remarkably, p53-status is a not a determinant of [Pt(BDIQQ)]Cl activity. In p53-null cells, [Pt(BDIQQ)]Cl induces cell death through mitochondrial dysfunction. Cancers with p53-null status could therefore be targeted using [Pt(BDIQQ)]Cl.

Graphical abstract: A dual-targeting, p53-independent, apoptosis-inducing platinum(ii) anticancer complex, [Pt(BDIQQ)]Cl

Supplementary files

Article information

Article type
10 Dec 2013
22 Jan 2014
First published
22 Jan 2014

Metallomics, 2014,6, 437-443

Author version available