Issue 1, 2015

Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem

Abstract

The breakup dynamics in non-Newtonian multiphase microsystems is associated with a variety of industrial applications such as food production and biomedical engineering. In this study, we numerically and experimentally characterize the dripping-to-jetting transition under various flow conditions in a Newtonian/shear-thinning multiphase microsystem. Our work can help to predict the formation of undesirable satellite droplets, which is one of the challenges in dispensing non-Newtonian fluids. We also demonstrate the variations in breakup dynamics between shear-thinning and Newtonian fluids under the same flow conditions. For shear-thinning fluids, the droplet size increases when the capillary number is smaller than a critical value, while it decreases when the capillary number is beyond the critical value. The variations highlight the importance of rheological effects in flows with a non-Newtonian fluid. The viscosity of shear-thinning fluids significantly affects the control over the droplet size, therefore necessitating the manipulation of the shear rate through adjusting the flow rate and the dimensions of the nozzle. Consequently, the droplet size can be tuned in a controlled manner. Our findings can guide the design of novel microdevices for generating droplets of shear-thinning fluids with a predetermined droplet size. This enhances the ability to fabricate functional particles using an emulsion-templated approach. Moreover, elastic effects are also investigated experimentally using a model shear-thinning fluid that also exhibits elastic behaviors: droplets are increasingly deformed with increasing elasticity of the continuous phase. The overall understanding in the model multiphase microsystem will facilitate the use of a droplet-based approach for non-Newtonian multiphase applications ranging from energy to biomedical sciences.

Graphical abstract: Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem

Article information

Article type
Paper
Submitted
09 Jul 2014
Accepted
23 Sep 2014
First published
23 Sep 2014

Lab Chip, 2015,15, 121-134

Author version available

Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem

Y. Ren, Z. Liu and H. C. Shum, Lab Chip, 2015, 15, 121 DOI: 10.1039/C4LC00798K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements