Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

There will be scheduled maintenance work beginning on Saturday 15th June 2019 at 8:30 am through to Sunday 16th June 2019 at 11:30 pm (BST).

During this time our website may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 12, 2014
Previous Article Next Article

3D printed microfluidic devices with integrated versatile and reusable electrodes

Author affiliations

Abstract

We report two 3D printed devices that can be used for electrochemical detection. In both cases, the electrode is housed in commercially available, polymer-based fittings so that the various electrode materials (platinum, platinum black, carbon, gold, silver) can be easily added to a threaded receiving port printed on the device; this enables a module-like approach to the experimental design, where the electrodes are removable and can be easily repolished for reuse after exposure to biological samples. The first printed device represents a microfluidic platform with a 500 × 500 μm channel and a threaded receiving port to allow integration of either polyetheretherketone (PEEK) nut-encased glassy carbon or platinum black (Pt-black) electrodes for dopamine and nitric oxide (NO) detection, respectively. The embedded 1 mm glassy carbon electrode had a limit of detection (LOD) of 500 nM for dopamine and a linear response (R2 = 0.99) for concentrations between 25–500 μM. When the glassy carbon electrode was coated with 0.05% Nafion, significant exclusion of nitrite was observed when compared to signal obtained from equimolar injections of dopamine. When using flow injection analysis with a Pt/Pt-black electrode and standards derived from NO gas, a linear correlation (R2 = 0.99) over a wide range of concentrations (7.6–190 μM) was obtained, with the LOD for NO being 1 μM. The second application showcases a 3D printed fluidic device that allows collection of the biologically relevant analyte adenosine triphosphate (ATP) while simultaneously measuring the release stimulus (reduced oxygen concentration). The hypoxic sample (4.8 ± 0.5 ppm oxygen) released 2.4 ± 0.4 times more ATP than the normoxic sample (8.4 ± 0.6 ppm oxygen). Importantly, the results reported here verify the reproducible and transferable nature of using 3D printing as a fabrication technique, as devices and electrodes were moved between labs multiple times during completion of the study.

Graphical abstract: 3D printed microfluidic devices with integrated versatile and reusable electrodes

Back to tab navigation

Publication details

The article was received on 10 Feb 2014, accepted on 11 Apr 2014 and first published on 14 Apr 2014


Article type: Paper
DOI: 10.1039/C4LC00171K
Author version
available:
Download author version (PDF)
Lab Chip, 2014,14, 2023-2032

  •   Request permissions

    3D printed microfluidic devices with integrated versatile and reusable electrodes

    J. L. Erkal, A. Selimovic, B. C. Gross, S. Y. Lockwood, E. L. Walton, S. McNamara, R. S. Martin and D. M. Spence, Lab Chip, 2014, 14, 2023
    DOI: 10.1039/C4LC00171K

Search articles by author

Spotlight

Advertisements