Single-step design of hydrogel-based microfluidic assays for rapid diagnostics†
Abstract
For the first time we demonstrate a microfluidic platform for the preparation of biosensing hydrogels by in situ polymerization of polyethyleneglycol diacrylate (PEG-DA) in a single step. Capillary pressure barriers enable the precise formation of gel microstructures for fast molecule diffusion. Parallel arrangement of these finger structures allows for macroscopic and standard equipment readout methods. The analyte automatically fills the space in between the gel fingers by the hydrophilic nature of the gel. Introducing the functional structures in the chip fabrication allows for rapid assay customization by making surface treatment, gel curing mask alignment and washing steps obsolete. Simple handling and functionality are illustrated by assays for matrix metalloproteinase, an important factor in chronic wound healing. Assays for total protein concentration and cell counts are presented, demonstrating the possibilities for a wide range of fast and simple diagnostics.