Jump to main content
Jump to site search

Issue 1, 2014
Previous Article Next Article

Increasing the sustainability of membrane processes through cascade approach and solvent recovery—pharmaceutical purification case study

Author affiliations

Abstract

Membrane processes suffer limitations such as low product yield and high solvent consumption, hindering their widespread application in the pharmaceutical and fine chemicals industries. In the present work, the authors propose an efficient purification methodology employing a two-stage cascade configuration coupled to an adsorptive solvent recovery unit, which addresses the two limitations. The process has been validated on purification of active pharmaceutical ingredient (API) from genotoxic impurity (GTI) using organic solvent nanofiltration (OSN). The model system selected for study comprises roxithromycin macrolide antibiotic (Roxi) with 4-dimethylaminopyridine (DMAP) and ethyl tosylate (EtTS) as API and GTIs, respectively. By implementing a two-stage cascade configuration for membrane diafiltration, the process yield was increased from 58% to 95% while maintaining less than 5 ppm GTI in the final solution. Through this yield enhancement, the membrane process has been “revamped” from an unfeasible process to a highly competitive unit operation when compared to other traditional processes. The advantage of size exclusion membranes over other separation techniques has been illustrated by the simultaneous removal of two GTIs from different chemical classes. In addition, a solvent recovery step has been assessed using charcoal as a non-selective adsorbent, and it has been shown that pure solvent can be recovered from the permeate. Considering the costs of solvent, charcoal, and waste disposal, it was concluded that 70% solvent recovery is the cost-optimum point. Conventional single-stage diafiltration (SSD) and two-stage diafiltration (TSD) configurations were compared in terms of green metrics such as cost, mass and solvent intensity, and energy consumption. It was calculated that implementation of TSD, depending on the batch scale, can achieve up to 92% cost saving while reducing the mass and solvent intensity up to 73%. In addition, the advantage of adsorptive solvent recovery has been assessed revealing up to 96% energy reduction compared to distillation and a 70% reduction of CO2 footprint.

Graphical abstract: Increasing the sustainability of membrane processes through cascade approach and solvent recovery—pharmaceutical purification case study

Back to tab navigation

Publication details

The article was received on 16 Jul 2013, accepted on 26 Sep 2013 and first published on 26 Sep 2013


Article type: Paper
DOI: 10.1039/C3GC41402G
Citation: Green Chem., 2014,16, 133-145
  •   Request permissions

    Increasing the sustainability of membrane processes through cascade approach and solvent recovery—pharmaceutical purification case study

    J. F. Kim, G. Székely, I. B. Valtcheva and A. G. Livingston, Green Chem., 2014, 16, 133
    DOI: 10.1039/C3GC41402G

Search articles by author

Spotlight

Advertisements