Issue 3, 2014

N-Methylpyridinium, a degradation product of trigonelline upon coffee roasting, stimulates respiratory activity and promotes glucose utilization in HepG2 cells

Abstract

N-Methylpyridinium (NMP) is a thermal degradation product of trigonelline formed upon coffee roasting and hypothesized to exert several health benefits in humans. Since for trigonelline evidence for hypoglycemic effects exists, we examined whether NMP also affects mechanisms of glucose utilization and cellular energy formation. For this purpose, the impact of trigonelline and NMP on respiratory activity, extracellular acidification, cellular adenosine nucleotides, energy supply from fatty acids and glucose as well as thermogenesis in HepG2 cells was analyzed. A 24 hour incubation with nanomolar concentrations of NMP enhanced oxygen consumption rates, resulting in increased ATP levels. Glucose was identified as the prevalent energy substrate as its uptake was augmented up to 18.1% ± 7.44% by NMP at 0.09 μM, whereas the uptake of fatty acids decreased upon NMP treatment. Cellular glucose uptake was also stimulated by trigonelline administration; however, a shift to the anaerobic energy production pathway was monitored. Both pyridine derivatives induced thermogenesis, although trigonelline presumably promoted proton leaks, while NMP increased the concentration of the uncoupling protein-2. We provide evidence that both compounds appear to stimulate cellular energy metabolism in HepG2 cells. Human intervention studies are warranted to ensure these effects in vivo.

Graphical abstract: N-Methylpyridinium, a degradation product of trigonelline upon coffee roasting, stimulates respiratory activity and promotes glucose utilization in HepG2 cells

Article information

Article type
Paper
Submitted
07 Aug 2013
Accepted
10 Dec 2013
First published
10 Dec 2013

Food Funct., 2014,5, 454-462

N-Methylpyridinium, a degradation product of trigonelline upon coffee roasting, stimulates respiratory activity and promotes glucose utilization in HepG2 cells

A. Riedel, C. M. Hochkogler, R. Lang, G. Bytof, I. Lantz, T. Hofmann and V. Somoza, Food Funct., 2014, 5, 454 DOI: 10.1039/C3FO60320B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements