Volume 173, 2014

Metal–semiconductor transition like behavior of naphthalene-doped single wall carbon nanotube bundles

Abstract

Naphthalene (N) or naphthalene-derivative (ND) adsorption-treatment evidently varies the electrical conductivity of single wall carbon nanotube (SWCNT) bundles over a wide temperature range due to a charge–transfer interaction. The adsorption treatment of SWCNTs with dinitronaphthalene molecules enhances the electrical conductivity of the SWCNT bundles by 50 times. The temperature dependence of the electrical conductivity of N- or ND-adsorbed SWCNT bundles having a superlattice structure suggests metal–semiconductor transition like behavior near 260 K. The ND-adsorbed SWCNT gives a maximum in the logarithm of electrical conductivity vs. T−1 plot, which may occur after the change to a metallic state and be associated with a partial unravelling of the SWCNT bundle due to an evoked librational motion of the moieties of ND with elevation of the temperature.

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
30 May 2014
Accepted
27 Jun 2014
First published
04 Aug 2014

Faraday Discuss., 2014,173, 145-156

Author version available

Metal–semiconductor transition like behavior of naphthalene-doped single wall carbon nanotube bundles

F. Khoerunnisa, A. Morelos-Gomez, H. Tanaka, T. Fujimori, D. Minami, R. Kukobat, T. Hayashi, S. Y. Hong, Y. C. Choi, M. Miyahara, M. Terrones, M. Endo and K. Kaneko, Faraday Discuss., 2014, 173, 145 DOI: 10.1039/C4FD00119B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements