Jump to main content
Jump to site search

Volume 171, 2014
Previous Article Next Article

Core-level transient absorption spectroscopy as a probe of electron hole relaxation in photoionized H+(H2O)n

Author affiliations

Abstract

There is fundamental interest in understanding the coupled nuclear and electronic dynamics associated with charge transfer processes in complex molecules and materials, which are often mediated by electron, electron hole or proton motion. With dramatic improvements in the techniques to generate extreme ultraviolet (XUV) and X-ray femtosecond pulses, it now becomes possible to trigger and probe these kinds of processes in real time. Here we study the dynamics of an electron hole created by photoionization in the valence shell of protonated water clusters H+(H2O)n. We demonstrate that the electron hole is strongly correlated with the protons forming the hydrogen bond network. We show that it is possible to probe key aspects of the valence electron hole dynamics and the coupled nuclear motion with femtosecond time resolution by resonantly exciting K-shell 1s electrons to fill the electron hole. This represents an opportunity for X-ray transient absorption spectroscopy.

Back to tab navigation

Publication details

The article was received on 23 Apr 2014, accepted on 29 Apr 2014 and first published on 25 Jul 2014


Article type: Paper
DOI: 10.1039/C4FD00078A
Citation: Faraday Discuss., 2014,171, 457-470
  •   Request permissions

    Core-level transient absorption spectroscopy as a probe of electron hole relaxation in photoionized H+(H2O)n

    Z. Li, M. El-Amine Madjet, O. Vendrell and R. Santra, Faraday Discuss., 2014, 171, 457
    DOI: 10.1039/C4FD00078A

Search articles by author

Spotlight

Advertisements