Volume 172, 2014

Electro-deposition and re-oxidation of carbon in carbonate-containing molten salts

Abstract

The electrochemical deposition and re-oxidation of solid carbon were studied in CO32− ion-containing molten salts (e.g. CaCl2–CaCO3–LiCl–KCl and Li2CO3–K2CO3) at temperatures between 500 and 800 °C under Ar, CO2 or N2–CO2 atmospheres. The electrode reactions were investigated by thermodynamic analysis, cyclic voltammetry and chronopotentiometry in a three-electrode cell under various conditions. The findings suggest that the electro-reduction of CO32− is dominated by carbon deposition on all three tested working electrodes (Ni, Pt and mild steel), but partial reduction to CO can also occur. Electro-re-oxidation of the deposited carbon in the same molten salts was investigated for potential applications in, for example, direct carbon fuel cells. A brief energy and cost analysis is given based on results from constant voltage electrolysis in a two-electrode cell.

Associated articles

Article information

Article type
Paper
Submitted
21 Mar 2014
Accepted
06 May 2014
First published
07 May 2014
This article is Open Access
Creative Commons BY license

Faraday Discuss., 2014,172, 105-116

Author version available

Electro-deposition and re-oxidation of carbon in carbonate-containing molten salts

H. V. Ijije, R. C. Lawrence, N. J. Siambun, S. M. Jeong, D. A. Jewell, D. Hu and G. Z. Chen, Faraday Discuss., 2014, 172, 105 DOI: 10.1039/C4FD00046C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements