Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Volume 172, 2014
Previous Article Next Article

Electro-deposition and re-oxidation of carbon in carbonate-containing molten salts

Author affiliations

Abstract

The electrochemical deposition and re-oxidation of solid carbon were studied in CO32− ion-containing molten salts (e.g. CaCl2–CaCO3–LiCl–KCl and Li2CO3–K2CO3) at temperatures between 500 and 800 °C under Ar, CO2 or N2–CO2 atmospheres. The electrode reactions were investigated by thermodynamic analysis, cyclic voltammetry and chronopotentiometry in a three-electrode cell under various conditions. The findings suggest that the electro-reduction of CO32− is dominated by carbon deposition on all three tested working electrodes (Ni, Pt and mild steel), but partial reduction to CO can also occur. Electro-re-oxidation of the deposited carbon in the same molten salts was investigated for potential applications in, for example, direct carbon fuel cells. A brief energy and cost analysis is given based on results from constant voltage electrolysis in a two-electrode cell.

Back to tab navigation

Associated articles

Article information


Submitted
21 Mar 2014
Accepted
06 May 2014
First published
07 May 2014

This article is Open Access

Faraday Discuss., 2014,172, 105-116
Article type
Paper
Author version available

Electro-deposition and re-oxidation of carbon in carbonate-containing molten salts

H. V. Ijije, R. C. Lawrence, N. J. Siambun, S. M. Jeong, D. A. Jewell, D. Hu and G. Z. Chen, Faraday Discuss., 2014, 172, 105
DOI: 10.1039/C4FD00046C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements