Volume 169, 2014

Methodologies for the analysis of instantaneous lipid diffusion in md simulations of large membrane systems

Abstract

Interactions between lipids and membrane proteins play a key role in determining the nanoscale dynamic and structural properties of biological membranes. Molecular dynamics (MD) simulations provide a valuable tool for studying membrane models, complementing experimental approaches. It is now possible to simulate large membrane systems, such as simplified models of bacterial and viral envelope membranes. Consequently, there is a pressing need to develop tools to visualize and quantify the dynamics of these immense systems, which typically comprise millions of particles. To tackle this issue, we have developed visual and quantitative analyses of molecular positions and their velocity field using path line, vector field and streamline techniques. This allows us to highlight large, transient flow-like movements of lipids and to better understand crowding within the lipid bilayer. The current study focuses on visualization and analysis of lipid dynamics. However, the methods are flexible and can be readily applied to e.g. proteins and nanoparticles within large complex membranes. The protocols developed here are readily accessible both as a plugin for the molecular visualization program VMD and as a module for the MDAnalysis library.

Supplementary files

Article information

Article type
Paper
Submitted
16 Dec 2013
Accepted
20 Feb 2014
First published
21 Feb 2014

Faraday Discuss., 2014,169, 455-475

Author version available

Methodologies for the analysis of instantaneous lipid diffusion in md simulations of large membrane systems

M. Chavent, T. Reddy, J. Goose, A. C. E. Dahl, J. E. Stone, B. Jobard and M. S. P. Sansom, Faraday Discuss., 2014, 169, 455 DOI: 10.1039/C3FD00145H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements