Issue 6, 2014

Ecological and enzymatic responses to petroleum contamination

Abstract

The changes in microbial ecology interpreted from taxonomic and functional genes and biological functions represented by urease and dehydrogenase activities were monitored in soil contaminated with different petroleum hydrocarbons including crude oil, diesel, n-hexadecane and poly-aromatic hydrocarbons (PAHs). It was shown that the presence of n-hexadecane stimulated the activity of indigenous microorganisms, especially alkane degrading bacteria, and led to over 20% degradation of n-hexadecane within one month. No obvious degradation of the other three types of petroleum hydrocarbons was observed. The stimulation effect was most marked in the soil spiked with a medium concentration (2500 mg kg−1 dry soil) of n-hexadecane. However, the presence of PAHs completely inhibited the previously-mentioned bioactivities of the soil. The content of PAH degrading bacteria, however, increased more than 10-fold, indicating the selection effect of PAHs on soil bacteria. The impacts of diesel and crude oil on the microbial ecology and biological functions varied significantly with their concentration. The disclosure of the ecological and enzymatic responses could be helpful in soil bioremediation.

Graphical abstract: Ecological and enzymatic responses to petroleum contamination

Article information

Article type
Paper
Submitted
31 Dec 2013
Accepted
28 Feb 2014
First published
28 Feb 2014

Environ. Sci.: Processes Impacts, 2014,16, 1501-1509

Author version available

Ecological and enzymatic responses to petroleum contamination

B. Wu, T. Lan, D. Lu and Z. Liu, Environ. Sci.: Processes Impacts, 2014, 16, 1501 DOI: 10.1039/C3EM00731F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements