Issue 12, 2014

NbFeSb-based p-type half-Heuslers for power generation applications

Abstract

We report a peak dimensionless figure-of-merit (ZT) of ∼1 at 700 °C in a nanostructured p-type Nb0.6Ti0.4FeSb0.95Sn0.05 composition. Even though the power factor of the Nb0.6Ti0.4FeSb0.95Sn0.05 composition is improved by 25%, in comparison to the previously reported p-type Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2, the ZT value is not increased due to a higher thermal conductivity. However, the higher power factor of the Nb0.6Ti0.4FeSb0.95Sn0.05 composition led to a 15% increase in the power output of a thermoelectric device in comparison to a device made from the previous best material Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2. The n-type material used to make the unicouple device is the best reported nanostructured Hf0.25Zr0.75NiSn0.99Sb0.01 composition with the lowest hafnium (Hf) content. Both the p- and n-type nanostructured samples are prepared by ball milling the arc melted ingot and hot pressing the finely ground powders. Moreover, the raw material cost of the Nb0.6Ti0.4FeSb0.95Sn0.05 composition is more than six times lower compared to the cost of the previous best p-type Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2. This cost reduction is crucial for these materials to be used in large-scale quantities for vehicle and industrial waste heat recovery applications.

Graphical abstract: NbFeSb-based p-type half-Heuslers for power generation applications

Article information

Article type
Paper
Submitted
15 Jul 2014
Accepted
18 Sep 2014
First published
13 Oct 2014

Energy Environ. Sci., 2014,7, 4070-4076

NbFeSb-based p-type half-Heuslers for power generation applications

G. Joshi, R. He, M. Engber, G. Samsonidze, T. Pantha, E. Dahal, K. Dahal, J. Yang, Y. Lan, B. Kozinsky and Z. Ren, Energy Environ. Sci., 2014, 7, 4070 DOI: 10.1039/C4EE02180K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements