Issue 36, 2014

Experimental and theoretical insights into the oxodiperoxomolybdenum-catalysed sulphide oxidation using hydrogen peroxide in ionic liquids

Abstract

The oxidation of organic sulphides with aqueous hydrogen peroxide in ionic liquids (ILs) catalysed by oxodiperoxomolybdenum complexes was investigated. The selective formation of several sulfones was achieved using the 1 : 3 ratio of sulphide : H2O2 in [C4mim][PF6] (C4mim = 1-butyl-3-methylimidazolium) in a reaction catalysed by the [Mo(O)(O2)2(H2O)n] complex. Conversely, sulfoxides were produced with good selectivities using a 1 : 1 ratio in the same solvent in a 1 h reaction with [Mo(O)(O2)2(Mepz)2] (Mepz = methylpyrazol). The use of [C4mim][PF6] as the solvent was advantageous for two reasons: (i) the improved performance of the H2O2–IL combination; (ii) recycling of the catalyst/IL mixture without a significant diminution of conversion or selectivity. A DFT analysis using the [Mo(O)(O2)2(L)] catalysts (L = Mepz, a; 3,5-dimethylpyrazole, dmpz, b; and H2O, c) indicated that a Sharpless-type outer-sphere mechanism is more probable than a Thiel-type one. The highest barrier of the catalytic profile was the oxo-transfer step, in which the nucleophilic attack of sulphide onto the peroxide ligand occurred with formation of dioxoperoxo species. In order to yield the sulfoxide and the starting catalyst, the oxidation of the resulting dioxoperoxo species with H2O2 was found to be the most favourable pathway. Subsequently, the sulfoxide to sulfone oxidation was performed through a similar mechanism involving the [Mo(O)(O2)2(L)] catalyst. The comparable energies found for the successive two oxo-transfer steps were in agreement with the experimental formation of sulfone in both the reaction with an excess of the oxidant and the stoichiometric reaction in the absence of the oxidant. In the latter case, diphenylsulfone was isolated as the major product in the 1 : 1 combination of diphenylsulphide and [Mo(O)(O2)2(Mepz)2] in the ionic liquid [C4mim][PF6]. Also, the compounds [HMepz]4[Mo8O26(Mepz)2]·2H2O, 1, [Hdmpz]4[Mo8O26(dmpz)2]·2dmpz, 2, and [Hpz]4[Mo8O22(O2)4(pz)2]·3H2O, 3, were obtained by treating in water, stoichiometrically, dimethylsulfoxide and the corresponding [Mo(O)(O2)2(L)2] complex (L = Mepz; 3,5-dimethylpyrazole, dmpz; pyrazol, pz). The crystal structures of octanuclear compounds 1–3 were indirect proof of the formation of the theoretically proposed intermediates.

Graphical abstract: Experimental and theoretical insights into the oxodiperoxomolybdenum-catalysed sulphide oxidation using hydrogen peroxide in ionic liquids

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2014
Accepted
18 Jul 2014
First published
21 Jul 2014

Dalton Trans., 2014,43, 13711-13730

Experimental and theoretical insights into the oxodiperoxomolybdenum-catalysed sulphide oxidation using hydrogen peroxide in ionic liquids

C. J. Carrasco, F. Montilla, E. Álvarez, C. Mealli, G. Manca and A. Galindo, Dalton Trans., 2014, 43, 13711 DOI: 10.1039/C4DT01733A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements