Issue 3, 2014

Silica nanosphere-supported palladium(ii) furfural complex as a highly efficient and recyclable catalyst for oxidative amination of aldehydes

Abstract

The present work reports the fabrication of a novel and highly efficient silica nanospheres-based palladium catalyst (SiO2@APTES@Pd-FFR) via immobilization of a palladium complex onto silica nanospheres functionalized with 3-aminopropyltriethoxysilane (APTES), and its catalytic application for the oxidative amination of aldehydes to yield commercially important amides. The structure of the nano-catalyst was confirmed by Solid-state 13C CPMAS and 29Si CPMAS NMR spectroscopy, Brunauer–Emmett–Teller (BET) surface area analysis, Fourier transform infrared spectroscopy (FT-IR), Energy dispersive X-ray fluorescence spectroscopy (ED-XRF), Atomic absorption spectroscopy (AAS), Transmission electron microscopy (TEM) and elemental analysis. The nano-catalyst was found to be highly effective for the oxidative amination of aldehydes using hydrogen peroxide as an environmentally benign oxidant to give amides. The effect of various reaction parameters such as temperature, amount of catalyst, reaction time, type of solvent, oxidant used, substrate to oxidant ratio etc. have been demonstrated to achieve high catalytic efficacy. Moreover, this nanostructured catalyst could be recovered with simplicity and reused for several cycles without any significant loss in its catalytic activity. In addition, the stability of the reused nano-catalyst was proved by FT-IR and HRTEM techniques. It is worth noting that the features of mild reaction conditions, simple work-up procedure, high product yield, no use of toxic organic solvents, high turn-over frequency (TOF), and easy recovery and reusability of the present quasi-homogeneous nano-catalyst make this protocol an attractive alternative to the existing catalytic methods for the oxidative amination of aldehydes to furnish industrially important amides.

Graphical abstract: Silica nanosphere-supported palladium(ii) furfural complex as a highly efficient and recyclable catalyst for oxidative amination of aldehydes

Supplementary files

Article information

Article type
Paper
Submitted
16 Jul 2013
Accepted
06 Oct 2013
First published
08 Oct 2013

Dalton Trans., 2014,43, 1292-1304

Silica nanosphere-supported palladium(II) furfural complex as a highly efficient and recyclable catalyst for oxidative amination of aldehydes

R. K. Sharma and S. Sharma, Dalton Trans., 2014, 43, 1292 DOI: 10.1039/C3DT51928G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements