Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 9, 2014
Previous Article Next Article

In situ diffraction of highly dispersed supported platinum nanoparticles

Author affiliations

Abstract

For catalytic metal nanoparticles (<2 nm), structural information is rarely generated using conventional X-ray diffraction (XRD) owing to the broad peaks and partial oxidation of the nanoparticles on exposure to air. Here we report how in situ synchrotron XRD provides structural information on reduced 1–2 nm Pt nanoparticles, which are unobservable by XRD when measured in air. Furthermore, for larger metal particles (>2 nm) where diffraction patterns of the metallic phase are obtainable in air, we show that on exposure to air the surface is oxidized with a metallic core producing misleading results with respect to particle size and lattice parameter. Results from XRD are cross-correlated with scanning transmission electron microscopy and three other synchrotron X-ray techniques, small angle diffraction (SAXS), pair distribution function (PDF) and X-ray absorption spectroscopy (XAS), to provide detailed characterization of the structure of very small nanoparticles in the metallic phase.

Graphical abstract: In situ diffraction of highly dispersed supported platinum nanoparticles

Back to tab navigation

Supplementary files

Article information


Submitted
03 Apr 2014
Accepted
29 May 2014
First published
12 Jun 2014

Catal. Sci. Technol., 2014,4, 3053-3063
Article type
Paper
Author version available

In situ diffraction of highly dispersed supported platinum nanoparticles

J. R. Gallagher, T. Li, H. Zhao, J. Liu, Y. Lei, X. Zhang, Y. Ren, J. W. Elam, R. J. Meyer, R. E. Winans and J. T. Miller, Catal. Sci. Technol., 2014, 4, 3053
DOI: 10.1039/C4CY00414K

Social activity

Search articles by author

Spotlight

Advertisements