Issue 16, 2014

Post-synthetic metalation of metal–organic frameworks

Abstract

Post-synthetic metalation (PSMet) offers expansive scope for a targeted approach to tailoring the properties of MOFs. Numerous methods for carrying-out PSMet chemistry have been reported, however, these can be categorized into three general strategies: (a) addition to coordinating groups; (b) counter-ion exchange in charged frameworks; or, (c) host–guest encapsulation of metal-containing entities within the pores of the framework. PSMet has been applied to enhance the performance characteristics of parent MOFs for gas storage and separation, and catalysis. Notably, PSMet is a prominent strategy in the field of MOF catalysis as it offers a route to design size-selective catalysts, based on the premise of reticular chemistry in MOFs and the ability to incorporate a range of catalytically-active metal centres. Other applications for materials produced via or utilising PSMet strategies include enhancing gas storage or molecular separations, the triggered release of drugs, sensing and tunable light emission for luminescent materials. This review surveys seminal examples of PSMet to highlight the broad scope of this technique for enhancing the performance characteristics of MOFs and to demonstrate how the PSMet concept can be developed for future applications.

Graphical abstract: Post-synthetic metalation of metal–organic frameworks

Article information

Article type
Review Article
Submitted
17 Feb 2014
First published
16 Apr 2014

Chem. Soc. Rev., 2014,43, 5933-5951

Author version available

Post-synthetic metalation of metal–organic frameworks

J. D. Evans, C. J. Sumby and C. J. Doonan, Chem. Soc. Rev., 2014, 43, 5933 DOI: 10.1039/C4CS00076E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements