Issue 7, 2014

Some unique features of polymer crystallisation

Abstract

Mono-lamellar single crystals in thin films provide suitable model systems for studying crystallisation of long chain polymers, making distinct differences with respect to small molecules visible. Due to the high viscosity of polymeric melts, transport toward the growth front is slow and the corresponding crystal growth can suitably be followed in time. Besides being able to investigate generic processes in controlling crystal morphology like epitaxial growth or growth front instabilities, thin film studies reveal unique features of polymer crystallisation. In particular, it is possible to observe a logarithmic spatio-temporal evolution of the lamellar crystal thickness, caused by continuous rearrangements leading to regions of differing degrees of meta-stability within polymer single crystals. As a consequence of the kinetically determined lamellar thickness and the corresponding variations in melting temperature, polymer crystals allow for self-seeding, i.e., crystals can be re-grown from a melt which contains a few thermodynamically stable remnants of pre-existing crystals acting as seeds. Hence, when a single crystal is molten, all remnants have a unique orientation and thus also the crystals re-grown from these seeds. The logarithmic time-dependence of the variation in crystal thickness is reflected in a number of seeds decreasing exponentially with increasing seeding temperature. Despite their molecular complexity and some unique features, polymers proved to be valuable systems for detailed studies of crystal growth, allowing testing of theoretical concepts of morphology development.

Graphical abstract: Some unique features of polymer crystallisation

Article information

Article type
Tutorial Review
Submitted
20 Aug 2013
First published
22 Oct 2013

Chem. Soc. Rev., 2014,43, 2055-2065

Some unique features of polymer crystallisation

G. Reiter, Chem. Soc. Rev., 2014, 43, 2055 DOI: 10.1039/C3CS60306G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements