Issue 7, 2014

Laser ablation for protein crystal nucleation and seeding

Abstract

With the recent development in pulsed lasers with ultrashort pulse widths or wavelengths, spatially precise, low-damage processing by femtosecond or deep-UV laser ablation has shown promise for the production of protein single crystals suitable for X-ray crystallography. Femtosecond laser processing of supersaturated solutions can shorten the protein nucleation period or can induce nucleation at low supersaturation, which improves the crystal quality of various proteins including membrane proteins and supra-complexes. In addition to nucleation, processing of protein crystals by femtosecond or deep-UV laser ablation can produce single crystalline micro- or macro-seeds without deterioration of crystal quality. This tutorial review gives an overview of the successful application of laser ablation techniques to nucleation and seeding for the production of protein single crystals, and also describes the advantages from a physico-chemical perspective.

Graphical abstract: Laser ablation for protein crystal nucleation and seeding

Article information

Article type
Tutorial Review
Submitted
01 Jul 2013
First published
19 Nov 2013

Chem. Soc. Rev., 2014,43, 2147-2158

Laser ablation for protein crystal nucleation and seeding

H. Y. Yoshikawa, R. Murai, H. Adachi, S. Sugiyama, M. Maruyama, Y. Takahashi, K. Takano, H. Matsumura, T. Inoue, S. Murakami, H. Masuhara and Y. Mori, Chem. Soc. Rev., 2014, 43, 2147 DOI: 10.1039/C3CS60226E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements