Issue 45, 2014

Structure and conformational analysis of the anti-HIV reverse transcriptase inhibitor AZT using MP2 and DFT methods. Differences with the natural nucleoside thymidine. Simulation of the 1st phosphorylation step with ATP

Abstract

A comprehensive quantum-chemical investigation of the conformational landscape of the HIV-1 reverse transcriptase inhibitor AZT (3′-azido-3′-deoxythymidine) nucleoside analogue was carried out. The whole conformational parameters (χ, γ, β, δ, ϕ, P, νmax) were analysed as well as the NBO charges. The search located at least 55 stable structures, 9 of which were by MP2 within a 1 kcal mol−1 electronic energy range of the global minimum. Most conformers were anti or high-anti around the glycoside bond and with North sugar ring puckering angles. The distribution of all the conformers according to the ranges of stability of the characteristic torsional angles was established. The results obtained were in accordance with those found in related anti-HIV nucleoside analogues. The best conformer in the anti form corresponded to the calculated values by MP2 of χ = −126.9°, β = 176.4° and γ = 49.1°. An analysis of the lowest vibrations in conformer C1 was carried out. The first hydration shell was simulated and the structural differences with the natural nucleoside deoxythymidine (dT) were determined. The first phosphorylation step was simulated by interacting ATP with the best hydrated clusters of AZT and dT. The Na cations act as a bridge between the phosphate moieties of ATP making it easy for –P3O3 to receive the H5′ proton from AZT or dT. A proton-transfer mechanism is proposed through the water molecules. When the number of the water molecules surrounding AZT is lower than 8, the first phosphorylation step of AZT can be carried out. However, the appropriate orientation of the O5′–H in dT avoids this limitation and it can be performed with large numbers of water molecules.

Graphical abstract: Structure and conformational analysis of the anti-HIV reverse transcriptase inhibitor AZT using MP2 and DFT methods. Differences with the natural nucleoside thymidine. Simulation of the 1st phosphorylation step with ATP

Supplementary files

Article information

Article type
Paper
Submitted
18 Aug 2014
Accepted
29 Sep 2014
First published
30 Sep 2014

Phys. Chem. Chem. Phys., 2014,16, 24763-24783

Author version available

Structure and conformational analysis of the anti-HIV reverse transcriptase inhibitor AZT using MP2 and DFT methods. Differences with the natural nucleoside thymidine. Simulation of the 1st phosphorylation step with ATP

M. A. Palafox, Phys. Chem. Chem. Phys., 2014, 16, 24763 DOI: 10.1039/C4CP03695F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements