Issue 39, 2014

Study of structural, electronic and optical properties of tungsten doped bismuth oxychloride by DFT calculations

Abstract

First-principle calculations have been carried out to investigate structural stabilities, electronic structures and optical properties of tungsten doped bismuth oxychloride (BiOCl). The structures of substitutional and interstitial tungsten, and in the form of WO6-ligand-doped BiOCl are examined. The substitutional and interstitial tungsten doping leads to discrete midgap states within the forbidden band gap, which has an adverse effect on the photocatalytic properties. On the other hand, the WO6-ligand-doped BiOCl structure induces a continuum of hybridized states in the forbidden gap, which favors transport of electrons and holes and could result in enhancement of visible light activity. In addition, the band gap of WO6-BiOCl decreases by 0.25 eV with valence band maximum (VBM) shifting upwards compared to that of pure BiOCl. By calculating optical absorption spectra of pure BiOCl and WO6-ligand-doped BiOCl structure, it is found that the absorption peak of the WO6-ligand-doped BiOCl structure has a red shift towards visible light compared with that of pure BiOCl, which agrees well with experimental observations. These results reveal the tungsten doped BiOCl system as a promising material in photocatalytic decomposition of organics and water splitting under sunlight irradiation.

Graphical abstract: Study of structural, electronic and optical properties of tungsten doped bismuth oxychloride by DFT calculations

Supplementary files

Article information

Article type
Paper
Submitted
26 Jun 2014
Accepted
22 Aug 2014
First published
26 Aug 2014

Phys. Chem. Chem. Phys., 2014,16, 21349-21355

Study of structural, electronic and optical properties of tungsten doped bismuth oxychloride by DFT calculations

W. Yang, Y. Wen, R. Chen, D. Zeng and B. Shan, Phys. Chem. Chem. Phys., 2014, 16, 21349 DOI: 10.1039/C4CP02801E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements