Issue 33, 2014

The atmospheric oxidation mechanism of 1,2,4-trimethylbenzene initiated by OH radicals

Abstract

The atmospheric oxidation mechanism of 1,2,4-trimethylbenzene (1,2,4-TMB) initiated by OH radicals is investigated using quantum chemistry calculations at M06-2X and ROCBS-QB3 levels. The calculations show that the initiation of the reaction is dominated by OH addition to C1, C3 and C5 to form 1,2,4-TMB-OH adducts R1, R3, and R5 with branching ratios of 0.22, 0.19, and 0.38, respectively, using ROCBS-QB3 energies. In the troposphere, the adducts react with O2 by irreversible H-abstraction to form phenolic compounds and by reversible addition to TMB-OH-O2 peroxy radicals, which will cyclize to bicyclic radicals, similar to those in benzene, toluene, and xylenes. The bicyclic radicals can further recombine with O2 to generate bicyclic peroxy and alkoxyl radicals. The bicyclic alkoxyl radicals would break the ring directly to form 1,2-dicarbonyl products and unsaturated 1,4-dicarbonyl co-products, or undergo another cyclization to form an epoxy group, followed by the ring-breakage to form 1,2-dicarbonyl products and epoxy-1,4-dicarbonyl co-products. The predicted yields of products agree reasonably with the previous experimental measurements, while considerable discrepancies also exist for the yields of nitrates, biacetyl, 4-oxo-2-pentenal, and butenedial, etc. Our mechanism also predicts a new type of epoxy-1,4-dicarbonyl compounds with a total yield of ∼0.32. The epoxy-1,4-dicarbonyl compounds have not been suggested or reported in previous studies.

Graphical abstract: The atmospheric oxidation mechanism of 1,2,4-trimethylbenzene initiated by OH radicals

Supplementary files

Article information

Article type
Paper
Submitted
09 May 2014
Accepted
09 Jul 2014
First published
14 Jul 2014

Phys. Chem. Chem. Phys., 2014,16, 17908-17917

The atmospheric oxidation mechanism of 1,2,4-trimethylbenzene initiated by OH radicals

Y. Li and L. Wang, Phys. Chem. Chem. Phys., 2014, 16, 17908 DOI: 10.1039/C4CP02027H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements