Issue 23, 2014

Identifying sp–sp2 carbon materials by Raman and infrared spectroscopies

Abstract

Two-dimensional (2D) materials composed of sp and sp2 carbon atoms (e.g., graphyne and graphdiyne) show many interesting properties. These materials can be constructed through alkyne homocoupling; however, the occurrence of various side reactions increases the difficulty of their synthesis and structural characterization. Here, we investigate the thermodynamic properties and vibrational spectra of several aryl-alkynes. Both homocoupling and side reactions are found to occur spontaneously at room temperature in terms of thermodynamics. The calculated Raman spectra of the homocoupling products show regular changes with increasing polymerization degree. By rationalizing the vibrational modes of various oligomers, the Raman spectrum of a 2D sp–sp2 carbon sheet is predicted; it exhibits three sharp peaks at 2241, 1560, and 1444 cm−1. Although the target and byproducts display similar vibrational modes, a combination of Raman and infrared spectroscopies can be used to differentiate them. The theoretical results are then used to analyze the structure of a synthesized sample and provide useful information.

Graphical abstract: Identifying sp–sp2 carbon materials by Raman and infrared spectroscopies

Supplementary files

Article information

Article type
Paper
Submitted
06 Feb 2014
Accepted
23 Apr 2014
First published
23 Apr 2014

Phys. Chem. Chem. Phys., 2014,16, 11303-11309

Author version available

Identifying sp–sp2 carbon materials by Raman and infrared spectroscopies

J. Wang, S. Zhang, J. Zhou, R. Liu, R. Du, H. Xu, Z. Liu, J. Zhang and Z. Liu, Phys. Chem. Chem. Phys., 2014, 16, 11303 DOI: 10.1039/C4CP00539B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements