TiO2 nanotubes sensitized with CdSe via RF magnetron sputtering for photoelectrochemical applications under visible light irradiation
Abstract
Highly ordered TiO2 NT arrays were easily decorated with CdSe via RF magnetron sputtering. After deposition thermal annealing at different temperatures was performed to obtain an improved TiO2/CdSe interface. The heterostructures were characterized by RBS, SEM, XRD, HRTEM, UV-Vis, EIS, IPCE and current versus voltage curves. The sensitized semiconducting electrodes display an enhanced photocurrent density of ca. 2 mA cm−2 at 0.6 V (vs. Ag/AgCl) under visible light (λ > 400 nm). The sensitized photoelectrodes displayed 3 and 535-fold enhanced photocurrent when compared to bare TiO2 NTs under 1 sun and under visible light illumination, respectively. IES results confirmed the improved charge transfer across the TiO2/CdSe/electrolyte interface after annealing at 400 °C. Incident photon-to-electron conversion efficiency measurements confirmed the efficient sensitization by allowing photoresponse in the visible range.