Characteristics of fast mediated bioelectrocatalytic reaction near microelectrodes
Abstract
The pseudo-steady-state current due to a mediated enzymatic reaction on a microelectrode is characterized on the basis of theoretical analysis and numerical simulation. The steady-state current is proportional to substrate concentration when the enzymatic reaction is considerably faster than substrate mass transport via nonlinear diffusion. Under such conditions, the reaction plane, where the mass flow of the substrate is converted to that of the mediator, exists near the electrode surface. The steady-state current increases as the diffusion coefficient of the substrate increases. In contrast, the diffusion coefficient and the concentration of the mediator have minor effects on the current. This difference can be explained on the basis of a change in the reaction plane location. When a sufficient amount of enzyme exists in a system, the system can be used as an amperometric biosensor, the response of which is independent of any change in enzyme activity.