Issue 18, 2014

Intermolecular proton shuttling in excited state proton transfer reactions: insights from theory

Abstract

The mechanism of base to base intermolecular proton shuttling occurring in the excited state proton transfer reaction between 7-hydroxy-4-(trifluoromethyl)coumarin (CouOH) and concentrated 1-methylimidazole base (1-MeId) in toluene solution is disclosed here by means of a computational approach based on Density Functional Theory (DFT) and Time Dependent DFT (TD-DFT). These methods allow us to characterize both the ground and excited state potential energy surfaces along the proton shuttling coordinate, and to assess the nature of the emitting species in the presence of an excess of 1-MeId. As a result, the tautomerism of CouOH is found to be photo-activated and, from a mechanistic point of view, the calculations clearly show that the overall driving force of the entire shuttling is the coumarin photoacidity, which is responsible for both the first proton transfer event and the strengthening of the following chain mechanism of base to base proton hopping.

Graphical abstract: Intermolecular proton shuttling in excited state proton transfer reactions: insights from theory

Supplementary files

Article information

Article type
Paper
Submitted
07 Jan 2014
Accepted
17 Mar 2014
First published
18 Mar 2014

Phys. Chem. Chem. Phys., 2014,16, 8661-8666

Author version available

Intermolecular proton shuttling in excited state proton transfer reactions: insights from theory

M. Savarese, P. A. Netti, N. Rega, C. Adamo and I. Ciofini, Phys. Chem. Chem. Phys., 2014, 16, 8661 DOI: 10.1039/C4CP00068D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements