Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 6, 2014
Previous Article Next Article

Mechanochemical dehydrochlorination and chelation reaction in the solid state: from a molecular salt to a coordination complex

Author affiliations

Abstract

We report the solid state structural transformation of a hydrogen bonded complex salt into a metal complex via dehydrochlorination using mechanochemistry. A crystalline salt containing a large and flexible bidentate dication hydrogen bonded to a tetrachlorometalate (II) anion has been ground in the presence of KOH. Substitution of charge-assisted hydrogen bonding interactions by coordination bonds via chelation has been demonstrated by single-crystal and powder X-ray diffraction analysis. By-product water molecules are included in the structure, playing an important role establishing electrostatic interactions. The irreversibility property of the transformation of the coordination complex into a hydrogen bonded complex salt was determined experimentally. Density functional calculations were used to attempt a rationalisation of the structural results into the mechanochemical reactions.

Graphical abstract: Mechanochemical dehydrochlorination and chelation reaction in the solid state: from a molecular salt to a coordination complex

Back to tab navigation

Supplementary files

Article information


Submitted
19 Sep 2013
Accepted
07 Oct 2013
First published
08 Oct 2013

CrystEngComm, 2014,16, 969-973
Article type
Paper

Mechanochemical dehydrochlorination and chelation reaction in the solid state: from a molecular salt to a coordination complex

F. Guo, H. Shao, Q. Yang, A. Famulari and J. Martí-Rujas, CrystEngComm, 2014, 16, 969
DOI: 10.1039/C3CE41900B

Social activity

Search articles by author

Spotlight

Advertisements