Issue 22, 2014

Fabrication and laser patterning of polystyrene optical oxygen sensor films for lab-on-a-chip applications

Abstract

We present a novel and simple method for patterning oxygen-sensitive polystyrene thin films and demonstrate its potential for integration with microfluidic lab-on-a-chip devices. Optical oxygen sensing films composed of polystyrene with an embedded luminescent oxygen-sensitive dye present a convenient option for the measurement of oxygen levels in microfluidic and lab-on-a-chip devices; however, patterning and integrating the films with poly(dimethylsiloxane) (PDMS) microfluidic devices has proven difficult due to a residue after dry etch patterning that inhibits subsequent PDMS bonding. Our new method uses mask-less laser ablation by a commercial laser ablation system to define the outline of the structures and subsequent bulk film removal by aqueous lift-off. Because the bulk film is peeled or lifted off of the substrate rather than etched, the process is compatible with standard PDMS plasma bonding. We used ToF-SIMS analysis to investigate how laser ablation facilitates this fabrication process as well as why dry etching polystyrene inhibits PDMS plasma bonding. The results of this analysis showed evidence of chemical species formed during the laser ablation and dry etching processes that can produce these effects. Our new method's mask-less nature, simplicity, speed, and compatibility with PDMS bonding make it ideally suited for single-use lab-on-a-chip applications. To demonstrate the method's compatibility with PDMS microfluidics, we also present a demonstration of the sensors' integration into a microfluidic oxygen gradient generator device.

Graphical abstract: Fabrication and laser patterning of polystyrene optical oxygen sensor films for lab-on-a-chip applications

Supplementary files

Article information

Article type
Paper
Submitted
29 Apr 2014
Accepted
04 Sep 2014
First published
04 Sep 2014

Analyst, 2014,139, 5718-5727

Author version available

Fabrication and laser patterning of polystyrene optical oxygen sensor films for lab-on-a-chip applications

S. M. Grist, N. Oyunerdene, J. Flueckiger, J. Kim, P. C. Wong, L. Chrostowski and K. C. Cheung, Analyst, 2014, 139, 5718 DOI: 10.1039/C4AN00765D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements