Issue 19, 2014

A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling

Abstract

In this study, a new optimization algorithm called the Variable Iterative Space Shrinkage Approach (VISSA) that is based on the idea of model population analysis (MPA) is proposed for variable selection. Unlike most of the existing optimization methods for variable selection, VISSA statistically evaluates the performance of variable space in each step of optimization. Weighted binary matrix sampling (WBMS) is proposed to generate sub-models that span the variable subspace. Two rules are highlighted during the optimization procedure. First, the variable space shrinks in each step. Second, the new variable space outperforms the previous one. The second rule, which is rarely satisfied in most of the existing methods, is the core of the VISSA strategy. Compared with some promising variable selection methods such as competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variable elimination (MCUVE) and iteratively retaining informative variables (IRIV), VISSA showed better prediction ability for the calibration of NIR data. In addition, VISSA is user-friendly; only a few insensitive parameters are needed, and the program terminates automatically without any additional conditions. The Matlab codes for implementing VISSA are freely available on the website: https://sourceforge.net/projects/multivariate-analysis/files/VISSA/.

Graphical abstract: A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling

Article information

Article type
Paper
Submitted
24 Apr 2014
Accepted
16 Jul 2014
First published
16 Jul 2014

Analyst, 2014,139, 4836-4845

A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling

B. Deng, Y. Yun, Y. Liang and L. Yi, Analyst, 2014, 139, 4836 DOI: 10.1039/C4AN00730A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements