Issue 7, 2014

Advances in nanowire transistors for biological analysis and cellular investigation

Abstract

Electrical biosensors based on silicon nanowire field-effect transistors (SiNW-FETs) have attracted enormous interest in the biosensing field. SiNW-FETs have proven to be significant and efficient in detecting diverse biomolecular species with the advantages of high probing sensitivity, target selectivity, real-time recording and label-free detection. In recent years, significant advances in biosensors have been achieved, particularly for cellular investigation and biomedical diagnosis. In this critical review, we will report on the latest developments in biosensing with SiNW-FETs and discuss recent advancements in the innovative designs of SiNW-FET devices. This critical review introduces the basic instrumental setup and working principle of SiNW-FETs. Technical approaches that attempted to enhance the detection sensitivity and target selectivity of SiNW-FET sensors are discussed. In terms of applications, we review the recent achievements with SiNW-FET biosensors for the investigations of protein–protein interaction, DNA/RNA/PNA hybridization, virus detection, cellular recording, biological kinetics, and clinical diagnosis. In addition, the novel architecture designs of the SiNW-FET devices are highlighted in studies of live neuron cells, electrophysiological measurements and other signal transduction pathways. Despite these remarkable achievements, certain improvements remain necessary in the device performance and clinical applications of FET-based biosensors; thus, several prospects about the future development of nanowire transistor-based instruments for biosensing employments are discussed at the end of this review.

Graphical abstract: Advances in nanowire transistors for biological analysis and cellular investigation

Article information

Article type
Critical Review
Submitted
01 Oct 2013
Accepted
11 Dec 2013
First published
16 Dec 2013

Analyst, 2014,139, 1589-1608

Advances in nanowire transistors for biological analysis and cellular investigation

B. Li, C. Chen, U. R. Kumar and Y. Chen, Analyst, 2014, 139, 1589 DOI: 10.1039/C3AN01861J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements