Jump to main content
Jump to site search

Issue 17, 2014
Previous Article Next Article

Impact of crystal orientation on the adsorption kinetics of a porous coordination polymer–quartz crystal microbalance hybrid sensor

Author affiliations

Abstract

The hybridization of porous coordination polymers (PCPs) with electronic devices is a powerful strategy for developing systems that are suitable for advanced applications, such as chemical sensing. The quartz crystal microbalance (QCM) technique is one that allows minute mass changes to be resolved with a high temporal resolution, and the growth of PCP crystals that provide selective adsorption properties on a QCM substrate can facilitate the rapid detection of certain molecules from a gas or vapour mixture. Herein, we demonstrate the immobilization of the flexible PCP Zn(NO2-ip)(bpy) (Zn-CID-5; NO2-ip2− = 5-nitroisophthalate, bpy = 4,4′-bipyridine) on QCM substrates and investigate the adsorptive properties of the fabricated systems. Notably, the crystal orientation could be controlled by the anchoring of chemical functionalities on the substrate surface, or by the addition of coordination modulators (e.g. 4-phenylpyridine) at the time of growth of the PCP crystals on the substrates. Here, the crystal orientation plays a significant role in determining the detection kinetics of organic vapours (e.g. methanol), and the [010]-oriented case which displays the fastest adsorption kinetics among the samples tested is studied under mixed component (methanol–hexane) conditions to demonstrate its response profile. In all, the results demonstrate the potential utility of PCP/QCM hybrid systems in sensor applications, and also serve to highlight the importance of optimizing the physical orientation of crystal growth in such systems to maximize the overall performance of the system.

Graphical abstract: Impact of crystal orientation on the adsorption kinetics of a porous coordination polymer–quartz crystal microbalance hybrid sensor

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 Oct 2013, accepted on 17 Dec 2013 and first published on 18 Dec 2013


Article type: Paper
DOI: 10.1039/C3TC32101K
J. Mater. Chem. C, 2014,2, 3336-3344

  •   Request permissions

    Impact of crystal orientation on the adsorption kinetics of a porous coordination polymer–quartz crystal microbalance hybrid sensor

    K. Hirai, K. Sumida, M. Meilikhov, N. Louvain, M. Nakahama, H. Uehara, S. Kitagawa and S. Furukawa, J. Mater. Chem. C, 2014, 2, 3336
    DOI: 10.1039/C3TC32101K

Search articles by author

Spotlight

Advertisements