Issue 21, 2014

Preparation of carbon coated MoS2 flower-like nanostructure with self-assembled nanosheets as high-performance lithium-ion battery anodes

Abstract

Loosely packed MoS2 nanosheets with thin carbon coating were synthesized via a facile, one-pot hydrothermal growth method. In the resulting optimally-designed nanoarchitecture, the ultrathin nanosheets, with a wall-thickness of approximately 5–10 nm, provide a large electrode–electrolyte interface so as to facilitate faster lithium-ion intercalation and diffusion. The flexible and conductive carbon overcoats stabilize the disordered structure of flower-like MoS2 nanosheets to accommodate more lithium-ions intercalation and thus maintain the structural and electrical integrity during cycling processes. In favor of the synergy and interplay of the carbon effect and intrinsic structural advantages, C@MoS2 (2 : 1) composites synthesized with a D-glucose precursor: MoO3 molar ratio of 2 : 1 exhibit high reversible specific capacity of 1419 mA h g−1 at 0.1 A g−1, retain 80% of the capacity after 50 cycles, and excellent rate capability as high as 672 mA h g−1 at 10 A g−1 with nearly 100% coulombic efficiency. The good electrochemical performance suggests that these C@MoS2 composites with unique flower-like morphology could be a promising candidate as an anode material for lithium-ion batteries.

Graphical abstract: Preparation of carbon coated MoS2 flower-like nanostructure with self-assembled nanosheets as high-performance lithium-ion battery anodes

Supplementary files

Article information

Article type
Paper
Submitted
13 Mar 2014
Accepted
04 Apr 2014
First published
04 Apr 2014

J. Mater. Chem. A, 2014,2, 7862-7872

Preparation of carbon coated MoS2 flower-like nanostructure with self-assembled nanosheets as high-performance lithium-ion battery anodes

S. Hu, W. Chen, J. Zhou, F. Yin, E. Uchaker, Q. Zhang and G. Cao, J. Mater. Chem. A, 2014, 2, 7862 DOI: 10.1039/C4TA01247J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements