Issue 38, 2014

High storage capacity and separation selectivity for C2 hydrocarbons over methane in the metal–organic framework Cu–TDPAT

Abstract

We report on the storage capacity and separation selectivity of an rht-type metal–organic framework, Cu–TDPAT [TDPAT = 2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine], for C2 hydrocarbons over CH4. Henry's constant, the isosteric heat of adsorption and the ideal adsorbed solution theory selectivity were calculated based on single-component sorption isotherms. Theoretical calculations indicate that both the open metal sites and the Lewis basic sites have strong interactions with the C2 molecules. The combination of these two kinds of sites lead to the highest C2H2–CH4 selectivity of 127.1 as well as record high values for C2H4 adsorption enthalpies. To mimic real-world conditions, breakthrough experiments were conducted on an equimolar four-component mixture containing C2H2, C2H4, C2H6 and CH4 at room temperature and 1 atm pressure. Our results show that Cu–TDPAT is a promising candidate for CH4 capture and purification.

Graphical abstract: High storage capacity and separation selectivity for C2 hydrocarbons over methane in the metal–organic framework Cu–TDPAT

Supplementary files

Article information

Article type
Paper
Submitted
16 Jul 2014
Accepted
08 Aug 2014
First published
08 Aug 2014

J. Mater. Chem. A, 2014,2, 15823-15828

Author version available

High storage capacity and separation selectivity for C2 hydrocarbons over methane in the metal–organic framework Cu–TDPAT

K. Liu, D. Ma, B. Li, Y. Li, K. Yao, Z. Zhang, Y. Han and Z. Shi, J. Mater. Chem. A, 2014, 2, 15823 DOI: 10.1039/C4TA03656E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements