Jump to main content
Jump to site search

Issue 8, 2014
Previous Article Next Article

Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes

Author affiliations

Abstract

We report the development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrode materials. Micro- and mesoporous carbon microspheres were fabricated based on a hydrothermal emulsion polymerization and common activation process. Manganese nitrate was introduced into the pores of the carbon microspheres, followed by thermal treatment to transform it into amorphous MnO2. As-prepared MnO2/porous carbon microspheres with high specific surface area (up to 1135 m2 g−1) and regular geometry (0.5–1.0 μm in diameter) benefit fast ion-transport and rapid charge–discharge, and contribute double layer capacitance to the hybrid electrode. Besides, manganese dioxide shows high pseudocapacitive behaviour due to faradaic redox reaction. Furthermore, the introduction of MnO2 greatly promotes the graphitization degree of the carbon matrix. A typical MnO2/carbon sample shows a partially graphitic structure with a very low intensity ratio of Raman D to G band (ID/IG = 0.27), which substantially increases the electronic conductivity and reduces the internal resistance (decreased from 0.42 to 0.20 Ω). As a result, the MnO2/porous carbon microspheres as supercapacitor electrodes exhibit excellent electrochemical performance (459 F g−1 at 1.0 A g−1 and 354 F g−1 at 20.0 A g−1 in 6 M KOH electrolyte). The well-developed MnO2/carbon hybrid materials with a high charge–discharge rate capability coupled with a high electrochemical capacitance highlight the great potential for widespread supercapacitor applications.

Graphical abstract: Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes

Back to tab navigation

Article information


Submitted
31 Oct 2013
Accepted
01 Dec 2013
First published
03 Dec 2013

J. Mater. Chem. A, 2014,2, 2555-2562
Article type
Paper
Author version available

Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes

M. Liu, L. Gan, W. Xiong, Z. Xu, D. Zhu and L. Chen, J. Mater. Chem. A, 2014, 2, 2555
DOI: 10.1039/C3TA14445C

Social activity

Search articles by author

Spotlight

Advertisements