Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 107, 2014
Previous Article Next Article

Multifunctional microparticles with uniform magnetic coatings and tunable surface chemistry

Author affiliations

Abstract

Microplatelets and fibers that can be manipulated using external magnetic fields find potential applications as miniaturized probes, micromirrors in optical switches, remotely actuated micromixers and tunable reinforcements in composite materials. Controlling the surface chemistry of such microparticles is often crucial to enable full exploitation of their mechanical, optical and sensorial functions. Here, we report a simple and versatile procedure to directly magnetize and chemically modify the surface of inorganic microplatelets and polymer fibers of inherently non-magnetic compositions. As opposed to other magnetization approaches, the proposed non-aqueous sol–gel route enables the formation of a dense and homogeneous coating of superparamagnetic iron oxide nanoparticles (SPIONs) on the surface of the microparticles. Such coating provides a suitable platform for the direct chemical functionalization of the microparticles using catechol-based ligands displaying high affinity towards iron oxide surfaces. By adsorbing for example nitrodopamine palmitate (ND-PA) on the surface of hydrophilic magnetite-coated alumina platelets (Fe3O4@Al2O3) we can render them sufficiently surface active to generate magnetically responsive Pickering emulsions. We also show that microplatelets and fibers coated with a uniform iron oxide layer can be easily manipulated using low magnetic fields despite their intrinsic non-magnetic nature. These examples illustrate the potential of the proposed approach in generating functional, magnetically responsive microprobes and building blocks for several emerging applications.

Graphical abstract: Multifunctional microparticles with uniform magnetic coatings and tunable surface chemistry

Back to tab navigation

Supplementary files

Article information


Submitted
03 Sep 2014
Accepted
07 Nov 2014
First published
11 Nov 2014

RSC Adv., 2014,4, 62483-62491
Article type
Paper

Multifunctional microparticles with uniform magnetic coatings and tunable surface chemistry

T. P. Niebel, F. J. Heiligtag, J. Kind, M. Zanini, A. Lauria, M. Niederberger and A. R. Studart, RSC Adv., 2014, 4, 62483
DOI: 10.1039/C4RA09698C

Social activity

Search articles by author

Spotlight

Advertisements