Jump to main content
Jump to site search

Issue 82, 2014
Previous Article Next Article

Structural evaluation and catalytic performance of nano-Au supported on nanocrystalline Ce0.9Fe0.1O2−δ solid solution for oxidation of carbon monoxide and benzylamine

Author affiliations

Abstract

In this work, we systematically investigated the structure–activity performance of nanosized Au/CeO2 and Au/Ce0.9Fe0.1O2−δ catalysts, along with nanocrystalline CeO2 and Ce0.9Fe0.1O2−δ supports, for the oxidation of carbon monoxide and benzylamine. An extensive physicochemical characterization was undertaken using XRD, BET surface area, BJH analysis, TG-DTA, XPS, TEM, Raman, AAS and CHN analyses. XRD studies confirmed the formation of smaller sized Ce0.9Fe0.1O2−δ nanocrystallites due to the incorporation of Fe3+ ions into the CeO2 lattice. Interestingly, Raman analysis revealed that the addition of Au remarkably improves the structural properties of the supports, evidenced by F2g peak shift and peak broadening, a significant observation in the present work. TEM images revealed the formation of smaller Au particles for Au/Ce0.9Fe0.1O2−δ (∼3.6 nm) compared with Au/CeO2 (∼5.3 nm), attributed to ample oxygen vacancies present on the Ce0.9Fe0.1O2−δ surface. XPS studies indicated that Au and Fe are present in metallic and +3 oxidation states, respectively, whereas Ce is present in both +4 and +3 oxidation states (confirming its redox nature). Activity results showed that the incorporation of Fe outstandingly enhances the efficacy of the Au/CeO2 catalyst for both CO oxidation and benzylamine oxidation. A 50% CO conversion was achieved at ∼349 and 330 K for Au/CeO2 and Au/Ce0.9Fe0.1O2−δ catalysts, respectively. As well, the Au/Ce0.9Fe0.1O2−δ catalyst showed ∼99% benzylamine conversion with ∼100% dibenzylimine selectivity for 7 h reaction time and 403 K temperature, whereas only 81% benzylamine conversion was achieved for the Au/CeO2 sample under similar conditions. The excellent performance of the Au/Ce0.9Fe0.1O2−δ catalyst is mainly due to the existence of smaller Au particles and an improved synergetic effect between the Au and the Ce0.9Fe0.1O2−δ support. It is confirmed that the oxidation efficiency of the Au catalysts is highly dependent on the preparation method.

Graphical abstract: Structural evaluation and catalytic performance of nano-Au supported on nanocrystalline Ce0.9Fe0.1O2−δ solid solution for oxidation of carbon monoxide and benzylamine

Back to tab navigation

Supplementary files

Article information


Submitted
22 Jul 2014
Accepted
04 Sep 2014
First published
05 Sep 2014

RSC Adv., 2014,4, 43460-43469
Article type
Paper
Author version available

Structural evaluation and catalytic performance of nano-Au supported on nanocrystalline Ce0.9Fe0.1O2−δ solid solution for oxidation of carbon monoxide and benzylamine

P. Sudarsanam, P. R. Selvakannan, S. K. Soni, S. K. Bhargava and B. M. Reddy, RSC Adv., 2014, 4, 43460
DOI: 10.1039/C4RA07450E

Social activity

Search articles by author

Spotlight

Advertisements