Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 13, 2014

Graphene as an atomically thin barrier to Cu diffusion into Si

Author affiliations

Abstract

The evolution of copper-based interconnects requires the realization of an ultrathin diffusion barrier layer between the Cu interconnect and insulating layers. The present work reports the use of atomically thin layer graphene as a diffusion barrier to Cu metallization. The diffusion barrier performance is investigated by varying the grain size and thickness of the graphene layer; single-layer graphene of average grain size 2 ± 1 μm (denoted small-grain SLG), single-layer graphene of average grain size 10 ± 2 μm (denoted large-grain SLG), and multi-layer graphene (MLG) of thickness 5–10 nm. The thermal stability of these barriers is investigated after annealing Cu/small-grain SLG/Si, Cu/large-grain SLG/Si, and Cu/MLG/Si stacks at different temperatures ranging from 500 to 900 °C. X-ray diffraction, transmission electron microscopy, and time-of-flight secondary ion mass spectroscopy analyses confirm that the small-grain SLG barrier is stable after annealing up to 700 °C and that the large-grain SLG and MLG barriers are stable after annealing at 900 °C for 30 min under a mixed Ar and H2 gas atmosphere. The time-dependent dielectric breakdown (TDDB) test is used to evaluate graphene as a Cu diffusion barrier under real device operating conditions, revealing that both large-grain SLG and MLG have excellent barrier performance, while small-grain SLG fails quickly. Notably, the large-grain SLG acts as a better diffusion barrier than the thicker MLG in the TDDB test, indicating that the grain boundary density of a graphene diffusion barrier is more important than its thickness. The near-zero-thickness SLG serves as a promising Cu diffusion barrier for advanced metallization.

Graphical abstract: Graphene as an atomically thin barrier to Cu diffusion into Si

Supplementary files

Article information


Submitted
21 Dec 2013
Accepted
10 Apr 2014
First published
11 Apr 2014

Nanoscale, 2014,6, 7503-7511
Article type
Paper
Author version available

Graphene as an atomically thin barrier to Cu diffusion into Si

J. Hong, S. Lee, S. Lee, H. Han, C. Mahata, H. Yeon, B. Koo, S. Kim, T. Nam, K. Byun, B. Min, Y. Kim, H. Kim, Y. Joo and T. Lee, Nanoscale, 2014, 6, 7503 DOI: 10.1039/C3NR06771H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements