Issue 12, 2014

VOC sensors based on a metal oxide nanofibrous membrane/QCM system prepared by electrospinning

Abstract

We report a simple synthetic route to fabricate crystalline ZnO and CeO2/ZnO nanofibrous mats and their sensing characteristics against volatile organic compounds (VOCs) such as benzene, propanol, ethanol, and dichloromethane. Precursor fibers were fabricated by electrospinning of poly(vinyl alcohol) and metal salt(s) at 2.5 kV cm−1 in aqueous solution. The fibers were directly deposited on the crystal surface of a quartz crystal microbalance (QCM). The crystal, which was coated by nanostructured PVA/metal precursor(s) fibers, was subjected to calcination in air at 500 °C for 5 h. The formation of an oxide based nanofiber mat was revealed by scanning electron microscopy and X-ray diffraction. Upon exposure of the nanofiber mats to the VOCs, the compounds adsorbed onto the surface of oxidic fibers. The physisorption of the compounds was confirmed by FTIR and QCM. Both systems showed sensitivity to the VOCs and they hold a broad promise particularly for sensing applications of volatile alcoholic compounds. The introduction of CeO2 into the ZnO structure reduced the sensitivity of ZnO most probably due to the decrement of oxygen vacancies.

Graphical abstract: VOC sensors based on a metal oxide nanofibrous membrane/QCM system prepared by electrospinning

Supplementary files

Article information

Article type
Paper
Submitted
30 May 2014
Accepted
28 Aug 2014
First published
29 Aug 2014

New J. Chem., 2014,38, 5761-5768

VOC sensors based on a metal oxide nanofibrous membrane/QCM system prepared by electrospinning

N. Horzum, D. Tascioglu, C. Özbek, S. Okur and M. M. Demir, New J. Chem., 2014, 38, 5761 DOI: 10.1039/C4NJ00884G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements